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Abstract

This paper introduces an incentive compatibility framework to an-
alyze agency problems linked to central counterparty (CCP) risk man-
agement. Our framework, which is based on a modern approach to
extreme value theory, is used to design CCP skin-in-the-game (SITG).
We show that under inadequate SITG levels, members are more ex-
posed to default losses than CCPs. The resulting risk management in-
centive distortions could be mitigated by using the proposed SITG for-
mulations. Our analysis addresses investor-owned and member-owned
CCPs, we also analyze multilayered and monolayer default waterfalls.
Viewing the total size of SITG as the lower bound on CCP regulatory
capital, the framework can be used to improve capital regulation of
investor-owned and member-owned CCPs. We also demonstrate that
bank capital rules for CCP exposures may underestimate risk. The
broader central clearing mandate of U.S. Treasuries may take place
under monolayer CCPs. These clearinghouses may need to allocate
more of their own capital to the default waterfall.
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1 Introduction

The over-the-counter (OTC) derivatives markets reform program launched
by the G20 nations after the global financial crisis (GFC) of 2007-2009
has drastically transformed these markets. Central clearing of standard-
ized OTC derivatives has been one of the main components of the reform
program (Ghamami and Glasserman, 2017). The Covid-19 crisis revealed
that the secondary market for U.S. Treasuries can become dysfunctional in
part due to the constraints on the capacity of dealers that intermediate this
market (Duffie (2020); Duffie et al. (2023)). The Group of Thirty (G30)
proposed a reform program in 2021 to strengthen the resilience of the U.S.
Treasury (UST) markets (G30, 2021). Broadening central clearing mandates
in government securities markets is one of the main elements of the proposed
reform program.

The main potential benefits of central clearing are well-known. Central
clearing has the potential to reduce the interconnectedness of the financial
system and improve transparency. Central clearing can help mitigate coun-
terparty credit risk1 through multilateral netting (Duffie and Zhu (2011);
Cont and Kokholm (2014); Ghamami and Glasserman (2017); Garratt and
Zimmerman (2015)) and when multilateral netting efficiencies dominate bi-
lateral netting, the cost of collateral requirements could be reduced.2 Cen-
tral clearing may also reduce the pressure on intermediaries’ balance-sheets
(Duffie (2020); Baranova et al. (2023)).

CCPs require effective governance, regulatory oversight, and highly ro-
bust risk management frameworks. Otherwise, increased use of CCPs may
create financial stability risks (Bernanke (2011); Dudley (2014); Tucker (2014)).
The failure of a systemically important CCP can be disastrous.3 The right
design and regulation of CCPs continue to generate debate among industry
participants, government officials, and the public.4

1In UST markets, counterparty credit risk materializes mostly in the form of settlement
failures (Ingber, 2017). UST market settlement fails rose significantly in March 2020,
(Figure 13 in (Duffie, 2020)).

2Multilateral netting outperforms bilateral netting under certain conditions. For in-
stance, as the number of asset class specific CCPs increases, and when bilateral netting
across an increasing number of asset classes is permitted, bilateral netting can dominate
multilateral netting. The overall netting efficiencies achieved by central clearing could also
depend on specifics of client clearing models. Research on client clearing is scarce (CPMI
(2022); Ghamami et al. (2022)).

3CCP failures or near failures are not impossible (Menkveld and Vuillemey, 2021). The
most well-known cases are the failure of the Caisse de liquidation in Paris in 1974, the
Kuala Lumpur Commodity Clearing House in 1983, and the Hong Kong Futures Guarantee
Corporation in 1987. Tucker (2014) highlights the impact of the failure of the Hong Kong
futures clearing house: “Basically, Hong Kong’s securities markets all stopped, affecting
households and firms well beyond the community who had positions in stock-index futures.”

4In 2019 and 2020, major buy-side and sell-side firms called for regulatory action to
make clearing houses safer. The industry paper consisted of a number of recommendations.
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CCPs rely on their default waterfall to manage the pooled counterparty
credit risk in centrally cleared markets (Cont (2015); Ghamami and Glasser-
man (2017); Murphy (2017)). The typical waterfall structure is multilayered
and consists of collateral posted by clearing members in the form of risk
sensitive initial margin (IM) and contributions to a quasi risk-based default
(guarantee) fund (DF). CCPs also often make equity capital contributions
to the waterfall. These capital contributions are often referred to as skin-
in-the-game (SITG). SITG is not risk-based in that it need not correspond
to the risk profile of a CCP.

When a member defaults, the CCP first uses the defaulter-pay resources
to cover losses. Potential remaining losses are mutualized among the CCP
and surviving members. SITG and surviving members’ DF assets can be
used in the loss mutualization process. SITG often comes into play twice.
First, right after the defaulter-pay resources. The second layer of SITG is
often used after the prefunded DF assets of surviving members are depleted.
That is, the second layer of SITG can be used before surviving members’
unfunded DF.5 The first and second layer of SITG are denoted by S and S̃
in this paper (Section 2).

This paper also analyzes what we call the monolayer default waterfall
where the IM pool is used for loss mutualization as a separate layer of DF
does not exist in addition to IM in some CCPs (Section 6). This case is
becoming increasingly important as some of the systemically importance se-
curities CCPs in the U.S. operate under this structure. In a recent contract-
theoretic work, Kuong and Maurin (2023) show that the CCP default wa-
terfalls in their most general and abstract forms may be optimal when the
collateral cost is not too high.6 Ghamami et al. (2021) and Ghamami (2020)
show that collateral in the form of IM may increase contagion and financial
stability risks.

The main goal of this paper is to introduce a robust framework for the
design of SITG. Unlike bank regulation, CCP regulation is mostly principles-
based (Ghamami, 2015). Capital regulation of CCPs may not correspond
adequately to their risk profiles. Our proposed formulations of SITG can be
viewed as risk-based lower bounds on minimum CCP capital requirements
(Section 5).7

Conflicts of interest and agency problems are ubiquitous in OTC mar-
kets. They arise in different forms in centrally cleared markets. When left

One recommendation was: “requiring CCPs to make material contributions of their own
capital to the default waterfall in two separate tranches.”

5When losses cannot be covered by prefunded financial resources, CCPs can often ask
the surviving members to make additional contributions to the default fund. These are
referred to as unfunded DF contributions.

6See Proposition 3 and Corollary 1 in Kuong and Maurin (2023).
7The survey study by Menkveld and Vuillemey (2021) highlights the fact that there is

little work on CCP regulation. One of the goals of this paper is to fill this gap.
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unmitigated, the ones with links to CCP risk management may have adverse
financial stability consequences. CCPs can be viewed as counterparty credit
risk insurance providers. The classical moral hazard problem here is that
clearing members may be incentivized to take more counterparty credit risk.
A well-designed loss mutualization scheme and adequate collateral require-
ments could mitigate this moral hazard problem. In the mechanism design
approach of Biais et al. (2016) and Bolton and Oehmke (2015), adequate
levels of collateral (margin) can mitigate moral hazard problems of this type
in derivatives markets.

Given that default losses can be mutualized among surviving members,
in the absence of adequate levels of SITG, CCPs may not be incentivized to
properly monitor couterparty credit risk. CCP risk management practices
could subsequently become questionable. A well-designed SITG can miti-
gate this variation of moral hazard. This agency problem can become subtle
at member-owned CCPs. Unlike investor-owned CCPs, one may think that
managers under a members’ cooperative ownership structure would be natu-
rally incentivized to put in place robust risk management frameworks. This
need not be case as we argue by drawing on the work of Hart and Moore
(1996) and Hansmann (2013). A member-owned CCP could face collective
decision-making challenges that may ultimately lead to insufficient levels of
SITG. We show that this problem can be exacerbated under CCPs with
heterogeneous membership (Sections 2 and 3). Membership is not homo-
geneous at large clearinghouses. Our results can be contrasted with the
contract-theoretic work of Huang (2019) where a member-owned CCP is
modeled as a welfare-maximizing social planner (public utility).

Taking the default waterfall as given, we develop an economic frame-
work to analyze central clearing risk management agency problems and de-
sign SITG to mitigate them. We show that conditional on a member’s
default, when S = 0, surviving member DF assets are more exposed to
losses compared to losses that the CCP could face under member prefunded
resources. Quantifying the corresponding loss probabilities, we introduce
incentive compatibility constraints (ICCs) and formulate SITG to mitigate
the risk management moral hazard problems. In our setting, S, in its sim-
plest form, is formulated as a percentage of the total DF, which is denoted
by D in this paper.

Consider the CCP’s tail exposure to each member conditional on its
default. Ordering these (tail) loss exposure estimates, for simplicity, assume
that member one creates the largest exposure.8 We call the ratio of the
CCP’s largest exposure to its aggregate exposures the concentration ratio

8We often refer to this member (member 1) as the largest member, or the member to
which the CCP has the largest exposure.
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and denote it by c1. We show that, in its simplest form, when

S = (1− c1)D,

some of the ICCs are satisfied, and the CCP-member risk management in-
centives can become more aligned (Section 3.2). Our results can be con-
trasted with Kuong and Maurin (2023) who present a rationale for decreas-
ing the SITG level as the number of members increases. In our setting,
when the number of members increases,the concentration ratio decreases so
S = (1− c1)D increases.

We also show that when S̃ = 0, member unfunded DF contributions are
more exposed to losses compared to the CCP loss exposures. This can distort
risk management incentives. The moral hazard problem can be mitigated
by formulating S̃ that satisfies a set of ICCs (Section 3.3). Similar to our
formulation of S, we show that S̃ is formulated as a percentage of D. We
use a modern approach to extreme value theory (EVT) to design SITG in its
most robust form (Section 4). We argue that it is natural to use the threshold
exceedances approach (Embrechts et al. (1997); McNeil et al. (2015); Tsay
(2010)) to model the conditional distribution of (default) losses in excess of
initial margin by the Pareto distribution (Assumption 4.1).

As shown in recent CCP surveys (Thiruchelvam, 2022; Walker, 2023),

• SITG is often a very small fraction of member prefunded resources.
For instance, SITG represents 1 percent of the default fund at the
UK’s largest CCP, the London Clearing House (LCH) for interest rate
swaps;

• SITG levels vary widely across CCPs; and

• policymakers do not have a quantitative methodology for evaluating
the sufficiency of SITG levels (Murphy, 2017).

The goal of this paper is to address these shortcomings. In our framework,
the total SITG, S + S̃, can be expressed as a fraction of the total default
fund size. Our numerical studies in Section 5.1 indicate that for realistic
parameters, this leads to SITG levels above 15-20 percent of the total default
fund size. This in turn leads to estimates of lower bound for CCP equity
capital in terms of total DF.

Our findings have implications for the adequacy of bank capital require-
ments for exposure to CCPs. The Basel Committee on Banking Supervision
(BCBS) has developed these CCP risk capital rules (BCBS, 2023). Example
5.3 shows that CCP risk capital rules can be improved as central clearing
risks may be underestimated in the current regulatory regime.

The largest securities clearinghouses in the U.S. operate under the mono-
layer default waterfall. We show that monolayer CCPs may need to hold
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significantly higher levels of SITG to mitigate risk management agency prob-
lems (Section 6). We can approximate the ratio of the monolayer CCP
SITG to the multilayered CCP SITG under similar ICCs. This ratio can
be roughly equal to the ratio of total IM to total DF under the multilay-
ered default waterfall. In practice, IM can be 10 times or more larger than
DF (Ghamami and Glasserman, 2017). According to the recent Risk.net
articles, the Fixed Income Clearing Corporation (FICC)9 contributes less
than 1 percent of its own capital to the default waterfall. Our framework
indicates that higher levels of SITG may be required to mitigate potential
risk management incentive distortions.

The rest of this paper is organized as follows. Section 2 reviews the
typical multilayered default waterfall. It shows that CCPs may not be in-
centivized to allocate their own capital to the default waterfall. Section 3
develops our basic framework. It captures risk management agency problems
discussed earlier and shows that they can be mitigated by holding adequate
levels of SITG. Section 4 models the tail of the loss distributions with the
Pareto distribution, it then develops our robust framework for formulating
S and S̃. Section 5 introduces a lower bound for CCP regulatory capital,
it also tests the adequacy of CCP risk capital rules. Section 6 analyzes the
monolayer default waterfall and compares it with the multilayered waterfall.
In Section 7, we discuss additional implications of our investigation.

2 Default Waterfall and CCP Equity Capital

After providing a brief overview of the default waterfall, we argue that in
the absence of governmental regulation, CCPs may not be incentivized to
make adequate equity capital contributions to the default waterfall. We
also note that SITG could be viewed as minimum CCP regulatory capital
requirements.

2.1 Default Waterfall

Consider a CCP that clears transactions in an asset class for N clearing
members indexed by i = 1, ..., N . We denote by Ui the exposure of the
CCP to member i over a given risk horizon, which is often referred to as
margin period of risk (MPOR). Ui is a positive random variable that in part
captures member i’s portfolio value changes over the MPOR.

Each member i with open positions contributes an initial margin Mi

to the CCP. At multilayered CCPs, IM posted by each member may only
be used to absorb losses arising from the member’s portfolio, but cannot

9FICC is a subsidiary of the Depository Trust & Clearing Corporation (DTCC) that
provides clearing for fixed income securities, including treasury securities and mortgage
backed securities.
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be used to offset losses of other members or other losses incurred by the
CCP. We discuss CCPs under the monolayer waterfall structure in Section
6. Regulatory guidelines require IM to cover the exposure with a certain
confidence level, typically with a minimum of 99%.10 We represent Mi as a
quantile of Ui for some confidence level 1− q where q ≤ 0.01.

The (residual) exposure net IM to member i is thus given by (Ui−Mi)
+ =

max(Ui −Mi, 0). The magnitude of the CCP’s exposure to member i net
IM in extreme but plausible scenarios is often modeled using a risk measure
ρ associated with the random variable (Ui−Mi)

+ at confidence level 1−qD,

Ei = ρqD

(
(Ui −Mi)

+
)
, (1)

with qD < q, we note that ρ can be Value-at-Risk (VaR), Expected Shortfall
(ES), Range VaR or any other loss-based risk measure (Cont et al., 2013).
In this paper, we use VaR unless it is mentioned otherwise,11

ρqD

(
(Ui −Mi)

+
)

= V aRqD((Ui −Mi)
+).

Each member also contributes to the CCP’s prefunded DF. Di represents
the contribution of member i to DF, and D denotes

D =
N∑
i=1

Di

the size of the total DF. Regulatory guidelines require that DF covers po-
tential losses incurred due to a given number of member defaults – at least
one and often two for systemically important CCPs.12 Denoting by E(i) the
ith the largest exposure,

E(1) = max (Ei, i = 1..N) ≥ E(2) ≥ ... ≥ E(N) = min (Ei, i = 1..N) .

The cover-one-based DF leads to a prefunded default fund given by the size
of the CCP’s largest tail exposure,

D = max (Ei, i = 1..N) = E(1). (2)

The cover-two-based DF is intended to cover the simultaneous default of
two members that would jointly create the CCP’s largest (tail) exposure.

10See Principle 6 in BIS (2012)
11This is to simplify the exposition and focus on the main results. It is not difficult to

carry out the analysis when ρ is taken as Expected Shortfall.
12See Principle 4 in BIS (2012). Systemically important securities CCPs in the U.S.

operate under the cover-one DF rule.

7



The cover-two DF can be formulated as13

D = E(1) + E(2). (3)

To simplify the exposition, the analysis in the main body of the paper mostly
focuses on the cover-one DF. Section 4.5 and Appendix A.5 extend our
analysis and results to the more general setting, i.e., cover-n DF; 2 ≤ n ≤ N .
Unlike IM which has become standardized to some extent after the GFC
at derivatives CCPs, the modeling and sizing of DF and its allocation to
members varies considerably across CCPs, (Cont (2015); Ghamami (2015);
Ghamami and Glasserman (2017)). Some derivatives CCPs allocate DF to
members proportional to tail exposures,

Di = D
Ei∑N
j=1Ej

. (4)

This seems plausible intuitively as the overall size of DF depends on the
magnitude of these exposures. However, other allocation schemes also ex-
ist. For instance, some CCPs allocate the total DF proportional to initial
margin, trading volume, open interest, or a weighted mixture of all these
quantities.

The order in which the default waterfall financial resources are used to
absorb losses when a member defaults can be summarized as follows.

• The first layer of protection against losses is provided by IM posted
by the defaulting member.

• If the loss exceeds the IM contribution of the defaulting member, it’s
prefunded default fund contribution is used to cover any additional
losses. If the loss exceeds the sum of the defaulting member’s IM and
DF contribution,

• The CCP makes a (capped) contribution to offset the remaining loss,
this contribution is often referred to as SITG. We denote the size of
this first layer of SITG by S.

• The default fund contributions of surviving members are used to ab-
sorb the potential remaining losses. These losses can be mutualized
and allocated across members proportional to their contribution Di to
the default fund.

• Once the prefunded default funds are exhausted, the CCP may use
various recovery mechanisms to restore its funding resources (Cont,

13It can also be formulated as max
{
ρqD

(
(Ui −Mi)

+ + (Uj −Mj)
+
)

; i 6= j, i, j = 1..N
}

.

As long as the subadditivity property holds, a cover-two DF formulated as (3) leads to a
more conservative DF.
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2015; Duffie, 2015). These typically include: (i) an additional capi-
tal contribution by the CCP – we denote the size of this second layer
of SITG by S̃; (ii) additional DF contributions (assessments) by sur-
viving members, capped at the level of their prefunded default fund
contribution; and (iii) other recovery measures, such as variation mar-
gin haircuts.

2.2 CCP Capital Contribution to the Default Waterfall

In the absence of SITG regulation, investor-owned CCPs may not be incen-
tivized to make capital contributions to the default waterfall.14 This can be
shown in different ways. In what follows, we first illustrate this in a very
simple and stylized way. Conditional on the default of member j, the CCP’s
loss up to this stage of the default waterfall can be written as

L = min

{
(Uj −Mj −Dj)

+, S

}
+ min

{
(Uj −Mj −D − S)+, S̃

}
.(5)

CCP revenue is proportional to the volume of cleared transactions. Consider
an investor-owned CCP. Let V and φ denote the CCP’s average clearing
volume over a given period of time and the clearing fee. The CCP’s expected
net profit could then be approximated by

φV − E[L]. (6)

Suppose that the CCP maximizes expected net profits by choosing optimal
levels of S and S̃. In the absence of capital constraints, the CCP solves this
problem by setting S = 0 and S̃ = 0. That the CCP chooses zero capital
contribution is clear from the above formulation.

If regulators require clearinghouses to contribute minimum regulatory
capital to the default waterfall, CCPs may then be incentivized to adjust
their capital structure and improve their risk management frameworks to
maximize (6) given the minimum regulatory-enforced S > 0 and S̃ > 0.
For instance, suppose that V is a decreasing function of IM. That is, all
else equal, margin levels above a regulatory minimum reduce the volume of
trades that the CCP can attract. Then, given regulatory-driven S > 0 and
S̃ > 0, the profit maximization problem would be solved by, for instance,
choosing optimal levels of IM, S, and S̃ above the regulatory minimum.

14We consider two broad classes of ownership structure: (i) the most common one, which
is outside ownership; and (ii) CCPs that can be viewed as members’ cooperatives. These
are referred to as investor-owned and member-owned (user-owned) CCPs in this paper.
It is insightful to view them as capital and consumer cooperatives (Hansmann, 2013).
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CCP Objective Function

The approximate net profit formulation (6) abstracts away from the total
level of CCP capital, costs associated with it, and the cost of a CCP failure.
We now sketch the objective function of an investor-owned CCP in the
presence of these costs.

Given the typical multilayered default waterfall, suppose that Et = S +
S̃+Es is the total capital of the investor-owned CCP, where Es is the portion
of CCP capital that is not allocated to the default waterfall. We also assume
that the unfunded DF is capped by a multiple of prefunded DF, βD, with
β > 0. Conditional on the default of member j, consider the loss to the
CCP in excess of member resources and the CCP’s total capital,

Le = (Uj −Mj −D − β(D −Dj)− Et)+. (7)

In the presence of Et > 0 and conditional on the default of member j,
the private profit-seeking objective of an investor-owned CCP would be to
maximize

φV − E[L]− E[Le]− c(Et)− cpQ(S, S̃, Es), (8)

where the first two terms come from (6), c(Et) is the social cost of CCP
capital, with c(·) being an increasing, convex function, cp is the private cost
of a CCP failure, and Q(S, S̃, Es) is the probability of such a failure, with
Q(·) being a multivariate decreasing, convex function. A basic and stan-
dard assumption in this paper is that CCP failures are costly for society.
we assume that, in the absence of capital requirements, CCPs do not fully
internalize the costs of their own failures. That is, the social cost of a CCP
failure, cs, is larger than the private cost cp. The second basic and stan-
dard assumption is that there is a social cost associated with having more
CCP capital, and the capital structure irrelevance principle (Modigliani and
Miller, 1958) fails for CCPs.15

Now, suppose that Et is given, for instance, it is set by regulators but
the allocation of it to S, S̃, and Es is left to the CCP. Then, it is not difficult
to see that the CCP maximizes its objective by setting S = S̃ = 0. That is,
it does not allocate its own equity capital to the default waterfall. While the

15Greenwood et al. (2017) use similar assumptions to formulate the cost of capital and
bank failure in their setting. As in Greenwood et al. (2017), the only cost of equity
that is incorporated in the objective function (8) is the one associated with the stock
of equity on the balance sheet. Under the simplifying assumption that the private costs
of equity finance equal social costs, Greenwood et al. (2017) show that bank risk-based
capital regulation can be optimal (in the steady state). We do not need to deviate from
this simplifying assumption to show that in the absence of SITG regulation, CCP equity
capital levels can be socially sub-optimal.

10



augmented objective function (8) is more comprehensive than the stylized
net profit formulation (6), to see that investor-owned CCPs may not be
incentivized to have any SITG, it suffices to focus on the simpler formulation
(6). In the absence of SITG regulation, policymakers may underestimate the
probability of CCP failure and so the corresponding social costs of such
a failure. In the next sections, we show that when S = S̃ = 0, CCP
risk management incentives can be distorted. This suggests that adequate
levels of STIG can improve CCP risk management and subsequently decrease
the CCP’s default probability. The following example may be insightful.
Suppose that the true default probability of the CCP is represented by the
logistic distribution function

Q(S, S̃, Es) =
exp(ζ0 + ζ1S + ζ2S̃ + ζ3Es)

1 + exp(ζ0 + ζ1S + ζ2S̃ + ζ3Es)
, (9)

where ζi < 0, with i = 0, 1, 2, 3. In the absence of SITG regulation, the reg-
ulator (social planner) may obtain sub-optimal levels of CCP equity capital
by maximizing the following objective function

φV − E[L]− E[Le]− c(Et)− csQ̂(Et), (10)

where instead of the CCP’s true default probability function (9), the follow-
ing inaccurate estimate of it is used,

Q̂(Et) =
exp(η0 + η1Et)

1 + exp(η0 + η1Et)
, (11)

where η0, η1 < 0.

Outside Ownership versus Members’ Cooperatives

It is well-known that some of the clearinghouses are member-owned (user-
owned), for instance, the Options Clearing Corporation (OCC) and sub-
sidiaries of the DTCC in the U.S., and the Japanese Security Clearing Cor-
poration (JSCC). Member-owned CCPs are often treated as public utilities
or welfare maximizing social planners in the existing contract-theoretic or
mechanism design models of central clearing.16 Since member-owned CCPs
are not owned by individuals but by other profit-seeking firms, economic
analysis of this class of CCPs under the assumption that they are welfare
maximizing public utilities may not have fruitful policy applications.

16See, for instance, Section 5 of Huang (2019). More generally, CCPs have sometimes
been modeled as public utilities, see, e.g. page 1677 in Biais et al. (2016).
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While this paper does not address the governance and ownership struc-
ture of CCPs, we believe that it is important to draw on the work of Hart
and Moore (1996) and Hansmann (2013). In their analysis of cooperatives,
Hart, Moore, and Hansmann (use different approaches to) illustrate the
importance of a control-based view of ownership and note that effective gov-
ernance of a members’ cooperative could be challenging, and the cost of col-
lective decision-making could be rather high under this ownership structure.
They show that outside ownership can be more efficient than a members’
cooperative when the membership becomes less homogeneous. Membership
is not homogeneous by any measures at systemically important CCPs.

Member-owned CCPs in advanced economies are large businesses that
are run by managers. Exerting effective control on management can be par-
ticularly difficult at a members’ cooperative. We argue that SITG should
be regulated at member-owned CCPs. Otherwise, risk management agency
problems may adversely impact financial stability. In the absence of ef-
fective capital regulation, member-owned CCPs may allocate insufficient
levels of SITG to the default waterfall due to: (i) collective decision-making
problems and membership heterogeneity; and (ii) the fact that CCP equity
capital could be more costly than collateral in the form of member default
fund contributions. In the next section, we sketch the objective function
of member-owned CCPs in comparison with (6) and illustrate that unlike
investor-owned CCPs, member-owned CCPs may have the incentives to al-
locate some levels of SITG to the default waterfall. We also show how mem-
bership heterogeneity can complicate collective decision-making on SITG
levels.

CCP Capital Regulation

Principles 2, 4, and 15 of the PFMI outline minimum regulatory capital
requirements for CCPs and indicate that parts of CCPs’ own financial re-
sources should be allocated to the default waterfall (BIS (2012, 2017)). Reg-
ulators and CCPs are then expected to specify the form and size of total
regulatory capital and the amount that should be allocated to the default
waterfall. In Europe, for instance, CCP capital requirements are the sum of
four components: (i) capital requirements for winding down or restructuring
activities; (ii) capital requirements for operational and legal risk; (iii) capi-
tal requirements for credit, counterparty, and market risk;17 and (iv) capital
requirements for business risk, (EUR (2012)). The European Market Infras-
tructure Regulation (EMIR) then requires CCPs to allocate 25 percent of
the total regulatory capital to the default waterfall, (EUR (2013); McLaugh-
lin (2018)). Under our proposed framework, S+ S̃, can be viewed as a lower

17This component of CCP capital requirements in Europe is formulated using BCBS
rules for credit, counterparty, and market risk capital requirments.
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bound for CCP regulatory capital. It can also be directly compared with
EMIR’s 25 percent rule.

3 Default Losses and Skin in the Game

In this section, we compare default losses from the perspective of the CCP
and members and illustrate that the CCP and members are disproportion-
ately exposed to default losses. The underlying economic argument is that
when SITG is designed to lower potential losses to member DF assets, risk
management incentive distortions can be mitigated.

3.1 Member Perspective

Consider the exposure of a surviving member to the default of another
member. If member j defaults, the potential loss to the DF assets of a
non-defaulting member i 6= j is given by

(Uj −Mj −Dj − S)+︸ ︷︷ ︸
Loss imputed to the remaining default fund

(
Di

D −Dj

)
.︸ ︷︷ ︸

Fraction imputed to member i

(12)

If we limit member i’s DF losses to its prefunded default fund contributions,
Di, the resulting exposure of member i due to the default of member j
becomes

Lji = Di min

(
(Uj −Mj −Dj − S)+

D −Dj
, 1

)
. (13)

Note that the ratio Lji/Di, i.e. the relative loss on DF assets is the same for
all non-defaulting members and only depends on the severity of the default
event and on the DF allocation rule. Surviving members incur losses if the
defaulting member’s loss exceeds its IM, its DF, and the first layer of SITG.
That is,

Lji > 0 ⇐⇒ Uj > Mj +Dj + S. (14)

This result holds regardless of the rules used for sizing the default fund and
for its allocation across members.

We now consider the case where DF contributions are allocated propor-
tional to tail exposures net IM as in (4). Given (14), non-defaulting members
will incur losses if

Uj > Mj +D
Ej∑N
k=1Ek

+ S.

In the cover-one case where D = E(1), this inequality becomes

Uj > Mj + Ej
E(1)∑N
k=1Ek

+ S (15)
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where Ej is defined in (1). The right side of (15) involves what we refer to
as the (default fund) concentration ratio

c1 =
E(1)∑N
k=1Ek

, (16)

which measures the relative magnitude of the CCP’s largest exposure. As
will be further discussed later, this ratio can play an important role in the
risk analysis of the default waterfall. Since c1 < 1, in the absence of any
CCP capital contribution, the probability that non-defaulting members take
a loss is always larger than qD,

P (Uj > Mj +D
Ej∑N
k=1Ek

) ≥ P (Uj > Mj + Ej) = qD.

Note that this is the case regardless of the magnitude of the default. In
short, setting S = 0 gives

P (Lji > 0) ≥ qD, (17)

where i 6= j.18

3.2 Skin in the Game: First Layer

Conditional on the default of member j, when S = 0, the potential loss to
the CCP in the presence of IM and prefunded DF is

Lj0 = (Uj −Mj −D)+,

we can write

P (Lj0 > 0) ≤ qD. (18)

To simplify the notation, hereafter, we assume that member 1 (N) is the
member to which CCP has the largest (smallest) exposure, i.e. E(1) = E1,
(E(N) = EN ). Under the cover-one rule, we have

P (L1
0 > 0) = qD.

18If quantified, measured, and monitored appropriately, loss probabilities associated
with members’ DF contributions can be used to construct credit ratings for CCPs’ default
fund.
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We note that in the absence of any CCP capital contributions, non-defaulting
members are more likely than the CCP to incur default losses

P (Lji > 0) ≥ qD ≥ P (Lj0 > 0). (19)

This inequality captures an important conflict of interest between the CCP
and members from risk management perspective: in the absence of SITG,
(non-defaulting) members are more exposed to default losses than the CCP.
This moral hazard problem could be mitigated by lowering loss probabilities
associated with non-defaulting member prefunded DF assets. More specif-
ically, we formulate S in a way that the following incentive compatibility
constraint is satisfied

P (Lji > 0) ≤ qD. (20)

To further elaborate on the incentive compatibility aspect of this constraint,
consider two scenarios. In scenario A, we set

Sl = (1− c1)D. (21)

Let cN = EN/(
∑N

i=1Ei). In scenario B, we have

Su = (1− cN )D. (22)

Note that Sl ≤ Su as cN ≤ c1.

Scenario A Conditional on the default of member 1, consider loss prob-
abilities from the perspective of member i and the CCP. Note that given

P (L1
i > 0) = P (U1 −M1 > D1 + S), and P (L1

0 > 0) = P (U1 −M1 > D),

setting S = D −D1 = (1− c1)D gives

P (L1
i > 0) = P (L1

0 > 0) = qD. (23)

That is, under (21), large counterparty default loss probabilities become
perfectly aligned from the CCP and member perspectives. Moreover, we
will show in the next section that under our EVT-based framework, in this
scenario, the loss probability qD becomes an upper bound on member loss
probabilities19

19In the next section, we argue that the proposed EVT-based framework is the natural
one to be considered for the design of SITG. It is intuitive economically and financially to
model the tail of (conditional)loss distributions with the Pareto distribution.
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P (Lji > 0) ≤ qD. (24)

While CCP and member risk incentives are fully aligned under largest coun-
terparty default losses in scenario A, non-defaulting members are more ex-
posed to other (remaining) counterparty default losses compared to the CCP,

P (Lji > 0) ≥ P (Lj0 > 0); j 6= 1, i. (25)

We will return to this inequality shortly.

Scenario B When Su = (1− cN )D, the following inequality holds

P (Lji > 0) = P (Uj −Mj > D +Dj −DN ) < qD, (26)

as Dj ≥ DN . That is, the overarching ICC (20) is satisfied. Moreover, under
(22), we can write

P (Lji > 0) ≤ P (Lj0 > 0), (27)

for all j 6= i. That is, under Su, non-defaulting members are all less exposed
to counterparty default losses compared to the CCP. In short, [Sl, Su] provide
a range of values for the first layer SITG where the moral hazard problem
can be mitigated to different quantifiable degrees. When policymakers aim
for regulating the minimum equity capital, Sl could be a natural choice for
SITG.

Remark That the CCP has small exposure to default losses,

P (Lj0 > 0) ≤ qD < q,

relies on the assumption that DF has been sized adequately. These loss
probabilities need not remain small if DF does not capture client clearing
risks properly. For instance, if in estimating DF, the CCP’s exposure to
member 1 conditional on its default, U1, does not take into account portfolios
that member 1 has cleared through the CCP on behalf of its customers,
P (L1

0 > 0) could exceed qD and q. Suppose that member 1 defaults and its
IM covers losses associated with member 1’s house (proprietary) account.
Over a period of time till client accounts can be ported to a non-defaulting
member, the CCP may need to make payments to member 1’s customers.
If DF is not sized properly to cover losses that could arise due to member
1’s default (or the default of some of its customers), the resilience of the
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CCP can be adversely impacted. This would all depend on specifics of client
clearing models, an important topic that is not addressed in this paper. The
default waterfall should evolve proportionately to the risk profile of the CCP.
Increased client clearing should increase IM, DF, and SITG adequately.

3.3 Skin in the Game: Second Layer

The second layer SITG could be viewed as a buffer against potential losses
to members’ unfunded DF assets. From the perspective of non-defaulting
member i and conditional on the default of member j, the total loss to
member i’s prefunded and unfunded default fund assets can be represented
by

L̃ji = Lji +

(
Uj −Mj − S −D − S̃

)+ Di

D −Dj
. (28)

When the unfunded default funds are capped by Di or a multiple of Di,
denoted by βDi; β > 0, the second term on the right side above is replaced
with the minimum of it and Di (βDi). Given (28), the probability that
potential losses to member i exceed its prefunded DF assets is given by

P (L̃ji > Di) = P (Uj −Mj > D + S + S̃) (29)

This is the likelihood that member i’s unfunded DF resources would come
into play due to the default of member j. This probability is bounded above
by qD when j 6= 1, or when S or S̃ are positive. Note that when S = S̃ = 0,
the probability that the DF of member i is depleted due to the default of
the largest member is equal to qD,

P (L̃1
i > Di) = qD. (30)

Given S > 0, we formulate S̃ to lower the likelihood that member losses
exceed their prefunded DF contributions. More specifically, consider a target
loss probability (upper bound) associated with unfunded DF contributions,
π̃, where 0 < π̃ < qD. Given S > 0, we specify S̃ in a way that the following
constraint

P (L̃ji > Di) ≤ π̃, (31)

is satisfied. In short, under the most basic form of the incentive compatibility
framework, S and S̃ can be formulated such that loss probabilities satisfy
the ICCs (20) and (31). We now demonstrate that (31) is grounded on
similar economic arguments used in the previous section. More specifically,
taking the CCP’s perspective, conditional on the default of member j, when
S̃ = 0, the potential loss to the CCP in excess of S and all prefunded and
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unfounded resources is

L̃j0 =
(
Uj −Mj −D − S − β(D −Dj)

)+
. (32)

Given S > 0, note that when S̃ = 0, we have

P (L̃ji > Di) > P (L̃j0 > 0), (33)

for any j 6= i. This inequality captures another important conflict of interest
between the CCP and its members: in the absence of the second layer
SITG, member potential losses in excess of their prefunded DF assets could
be larger than the comparable potential loss to the CCP. The target loss
probability π̃ will be chosen such that the ICC (31) would mitigate this
moral hazard problem. To elaborate more on this second overarching and
basic incentive compatibility constraint, it will be insightful to consider two
scenarios. First, we set

S̃l = βD(1− c1). (34)

In scenario B, the second layer SITG is formulated as follows,

S̃u = βD(1− cN ). (35)

Note that S̃l ≤ S̃u.

Scenario A Suppose that π̃ = P (L̃1
0 > 0). Given S > 0, setting S̃l =

βD(1− c1) results in

P (L̃1
i > Di) = P (L̃1

0 > 0) = P
(
U1 −M1 > D + S + β(D −D1)

)
. (36)

In words, under (34), the CCP and members risk management incentives
become fully aligned in terms of potential largest counterparty default losses
that would exceed the prefunded resources and the first layer SITG. As will
be shown in the next section, under our EVT (Pareto)-based framework,

P (L̃ji > Di) ≤ P (L̃1
i > Di), (37)

for j 6= i, 1. Consequently, under (34), the explicit incentive compatibil-
ity constraint (36) along with the above EVT-driven inequality gives (31).
However, we note that in scenario A, we have

P (L̃ji > Di) ≥ P (L̃j0 > 0), (38)
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for any j 6= i. In words, while S̃l = βD(1− c1) mitigates the moral hazard
problem associated with unfunded DF asset losses to some extent, members
remain more exposed than the CCP to counterparty default losses that
would exceed prefunded resources and the first layer SITG. We will return
to inequality (38) shortly.

Scenario B Suppose that S > 0 is given. Since cN ≤ c1, setting S̃u =
βD(1− cN ) gives

P (L̃ji > Di) ≤ P (L̃j0 > 0), (39)

for any j 6= i. It is useful to note that under (35), we have

P (L̃Ni > Di) = P (L̃N0 > 0) = P
(
UN −MN > D + S + β(D −DN )

)
.

That is, under the more restrictive second layer SITG (35), members become
less likely than the CCP to incur counterparty default losses that would
exceed their unfunded resources and the first layer SITG. Here the target
loss probability upper bound associated with ICC (31) could continue to be
viewed as π̃ = P (L̃1

0 > 0). That is, in this scenario, both (31) and the more
explicit and restrictive ICC (39) are satisfied. In sum, the second layer SITG
that belongs to the range [S̃l, S̃u] can mitigate this variation of the moral
hazard problem linked to CCP and members tail risk management incentives
to different quantifiable degrees. Given the regulatory focus on minimum
equity capital requirements, policymakers could adopt and appropriately
calibrate S̃l as an economically sound choice for the second layer of SITG.

3.4 Member-Owned CCPs

Exerting control on managers could be difficult at member-owned CCPs in
part due to collective-decision making complications. This agency problem
can be exacerbated under membership heterogeneity. Member-owned clear-
inghouses may have the incentive to allocate some levels of equity capital
to the default waterfall. However, inadequate SITG levels may adversely
impact risk management practices under this ownership structure.

Recall the expected net profit formulation (6) at investor-owned CCPs.
We now introduce a variation of it that corresponds to member-owned CCPs.
Suppose that ψiVi represents member i’s gross profit from its trades in a
volume of Vi that have been cleared through the CCP. For simplicity, we
assume that V = V1 + V2 + ... + VN .20 For simplicity, suppose that all

20Note that
∑N

i=1 ψi need not be equal to φ as the fee structure at the CCP can be
different from each member’s profit generating schemes from its trading activities.
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members receive an equal share of the CCP’s profit. Then, conditional on
the default of member j, member i’s expected net profit can be written as

φV − E[L]

N − 1
+
(
ψiVi − E[L̃ji ]

)
,

where the second term inside the parentheses can be viewed as member i’s
consumer surplus in the sense of Hart and Moore (1996).21 Note that L̃ji is
the total loss to member i’s prefunded and unfunded DF assets defined in
(28). Taking the typical multilayered default waterfall as given, member i
maximizes expected net profit by choosing optimal levels of S and S̃,

φV

N − 1
+ ψiVi −

(
E[L]

N − 1
+ E[L̃ji ]

)
. (40)

Consequently, the expected net profit of the member-owned CCP conditional
on the default of member j becomes,

(φ+
∑
i 6=j

ψi)V −
(
E[L] +

∑
i 6=j

E[L̃ji ]

)
. (41)

These simple formulations highlight the basic fact that unlike investor-owned
CCPs, member-owned CCPs may not be incentivized to set S = S̃ = 0.22

To see this, consider expected losses in (40), and note that CCP managers’
expected loss E[L] can be viewed as an increasing function of S and S̃ while
member i’s expected loss E[L̃ji ] can be viewed as a decreasing function of S
and S̃. So, an optimal first and second layer SITG could be positive.23

Member and CCP expected net profit functions highlight the adverse
impact of membership heterogeneity on SITG levels. To see this, consider
member expected net profit function (40). It then suffices to note that L̃ji
and so E[L̃ji ] can be viewed as increasing functions of Di. In words, since
larger members contribute more to the DF, their optimal levels of SITG
can be larger than that of smaller members. Larger members would vote
for higher levels of SITG while smaller members would vote for lower SITG
levels. In a heterogeneous member-owned CCP, reaching a consensus on
an optimal level of SITG can be particularly challenging as members with

21In any market, total surplus can be viewed as the sum of total producer surplus and
total consumer surplus. See Section VII in Hart and Moore (1996).

22We can also easily see from (41) that modeling member-owned CCPs as welfare max-
imizing social planners may not prove useful.

23The empirical results of Huang (2019) confirm that member-owned CCPs hold higher
levels of SITG compared to investor-owned CCPs, (see Figure 6 of Huang (2019), which
uses 2015 quantitative disclosure data from CCPs).
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different levels of DF assets would vote for different levels of SITG.24

While conflicts of interest and agency problems in investor-owned and
member-owned CCPs are not identical, the outcome could be similar: clear-
inghouses with inadequate and socially sub-optimal levels of SITG and CCP
equity capital. This is particularly the case for systemically important CCPs
that are also exposed to the too-big-to-fail problem.

We note that our SITG design framework directly applies to member-
owned CCPs. For instance, consider inequality (19) that highlights the
conflict of interest between the investor-owned CCP and its members from
the risk management perspective. At the member-owned CCP, similarly,
when S = 0, members are more exposed to default losses than the CCP,

P (Lji > 0) ≥ qD ≥ P (Lj0 > 0),

and this could disincentivize managers to monitor and manage concentrated
risks at clearinghouse adequately. Collective decisions-making problems and
membership heterogeneity in the absence of governmental SITG regulation
could lead to insufficient levels of SITG. Formulating S such that the ICC
(20) or (27) are satisfied could mitigate risk management incentive distor-
tions and may also improve the collective decision-making process under this
ownership structure.

Remark While the net profit formulations (40) and (41) abstract away
from the costs of CCP equity capital and CCP default, our results remain the
same when these costs are incorporated into augmented objective functions.
Recall the objective function of an investor-owned CCP (8). Given (40)
under a members’ cooperative ownership structure, the augmented objective
function of member i conditional on the default of member j can be written
as

φV

N − 1
+ ψiVi −

(
E[L] + E[Le] + cm(Et) + cmp Q

m(S, S̃, Es)

N − 1
+ E[L̃ji ]

)
, (42)

where Le is defined in (7), cm(Et) is the social cost of the CCP equity capital
under a members’ cooperative ownership structure, with cm(·) being an
increasing, convex function, cmp is the private cost of the CCP’s default, and

Qm(S, S̃, Es) is CCP default probability, with Qm(·) being a multivariate
decreasing, convex function. Suppose that Et is set by the regulators, and
that given Et, member i maximizes (42) by allocating the total equity capital
to S, S̃, and Es. As discussed earlier, since E[L̃ji ] is a decreasing function

24Note that control in the form of voting rights may be allocated according to a simple
one-member-one-vote rule.
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of S and S̃, the optimal SITG level from the perspective of member i could
be positive. However, SITG and total CCP equity capital levels can be
inadequate and socially sub-optimal in the absence of governmental SITG
regulation because: (i) CCP and members do not fully internalize the cost
of CCP failure; and (ii) under membership heterogeneity, different members
could arrive at different (privately) optimal SITG levels, and this could lead
to inadequate CCP-wide SITG. Our analysis suggests that SITG should be
regulated at member-owned CCPs.

4 Skin in the Game: Modeling Tail Risk

We use a modern approach to extreme value theory to model the tail risk
associated with default losses. This section introduces our framework in
its most robust and general form. The proposed SITG formulations can
mitigate risk management agency problems to different measurable degrees.

4.1 Modeling Tail Risk

Default losses often arise during extreme and distressed market conditions.
To analyze the distribution of these losses, it is natural to model the tail of
the loss distributions associated with CCP-member portfolios. A flexible and
powerful semi-parametric approach for modeling these distribution tails is to
use the generalized Pareto distribution (GPD), (McNeil et al., 2015, Ch.7,
Theorem 7.20). It is well-known that GPD becomes an ordinary Pareto
distribution in the heavily-tailed scenario, the case used in our study.

More specifically, we use the threshold exceedances approach to model
the tail of the loss distribution.25 We represent the conditional distribution
of losses in excess of a high threshold as a Pareto distribution, whose tail
exponent or shape parameter α > 1 quantifies the heaviness of the tail.
The natural threshold in our setting is initial margin. We thus assume that
default exposures in excess of IM have a Pareto or power-law distribution.
Specifically, the following assumption is used to derive our S and S̃ formu-
lations.26

Assumption 4.1 (Pareto tail) The CCP’s exposure to member i condi-
tional on its default, Ui, satisfy

P (Ui −Mi > x| Ui ≥Mi) =

(
κi + x

κi

)−α
= 1− F (x;κi, α), (43)

25See also Embrechts et al. (1997) and Tsay (2010). The threshold exceedances approach
is also referred to as peaks over thresholds (POT).

26Theorem 7.20 in McNeil et al. (2015) illustrates that: “GPD is the canonical distri-
bution for modeling excess losses over high thresholds.” (See page 278 of McNeil et al.
(2015)).
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where Mi = V aRq(Ui) and F (x;κ, α) = 1−
(
κ+ x

κ

)−α
is the Pareto distribution with the tail exponent (shape parameter) α > 1
and scale parameter κ > 0.27

It is important to note that we are not assuming a parametric form for
the entire loss distribution but only for tail events with probability less than
q, i.e. for losses beyond IM. This assumption is consistent with risk models
used by more advanced and sophisticated CCPs and is satisfied with high
accuracy for many heavy-tailed distributions, such as Student-t, whose tails
behave as (43) for high thresholds. Heavier tails correspond to lower values
of the tail exponent α. Empirical studies indicate that this assumption
is plausible for different asset classes, for instance, for equity and credit
portfolios, with α in the range 2 − 4 for equity (Cont, 2001) and credit
default swap (CDS) portfolios (Cont and Kan, 2011). Higher values of the
tail exponent correspond to equity and CDS indices. Recall that

Ei = VaRqD

(
(Ui −Mi)

+
)
,

where qD < q ≤ .01. Assuming that DF is allocated according to Ei as in
(4), we can write

P (Ui −Mi > Ei) = qD = qP (Ui −Mi > Ei|Ui > Mi) = q

(
κi + Ei
κi

)−α
,

where the last equality follows from Assumption 4.1. This gives

κi =
V aRqD((Ui −Mi)

+)

(qD/q)−1/α − 1
. (44)

This expression for κi shows that the scale parameter (κi) is proportional
to the magnitude of losses in excess of IM. In what follows, we assume that
default loss distributions satisfy Assumption 4.1 with some tail exponent α
and a scale parameter κi that may vary across members. Note that (44)
implies

Ei∑N
j=1Ej

=
κi∑N
j=1 κj

, (45)

for any 0 < qD < 1. We represent this ratio by ci. We will shortly return to
concentration ratio c1.

Remark Let σ2
i denote the variance of Ui. Following Lemma A.2, if we

assume that Ui/σi ∼ T (0, ν) has a mean-zero Student-t distribution with

27As discussed earlier, it is often the case that q ≤ .01 in risk management applications.
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ν > 1 degrees of freedom, we will have

Mi∑N
j=1Mj

=
Ei∑N
j=1Ej

=
κi∑N
j=1 κj

.

That is, when default exposure distributions over MPOR are modeled by
Student-t distributions, total DF can be allocated equivalently to members
using Ei or Mi. Concentration ratio can also be approximated based on IM.
We will revisit this assumption in Section 6.

4.2 Skin in the Game: First Layer

We continue to assume that the CCP has its largest (smallest) exposure to
member 1 (N). The following proposition gives the conditional probability
distribution of the largest counterparty default loss L1

i to member i 6= 1.

Proposition 4.2 Under Assumption 4.1, the probability distribution func-
tion of member i’s loss conditional on the default of the member to which
the CCP has the largest exposure is given by,

P (L1
i > x) = q

[
1 +

(
(
q

qD
)1/α − 1

)(
c1 +

S

D
+

(1− c1)

ci

x

D

)]−α
(46)

As illustrated earlier, in the absence of any distributional assumptions,
when S = 0, we have P (L1

i > 0) ≥ qD and P (L̃1
i > Di) = qD, which can be

easily confirmed in the Pareto-based formulation. Working backwards, we
can compute S which corresponds to a given target loss probability π > 0.
For instance, suppose that π = P (L1

i > 0). Solving for S yields,

P (L1
i > 0) = π ⇐⇒ S =

(
( qπ )1/α − 1

( q
qD

)1/α − 1
− c1

)
D. (47)

Our basic overarching objective in formulating S is to lower loss probabilities
associated with member DF assets in a way to achieve the ICC (20). Setting
π ≤ qD satisfies this criterion as will be shown shortly. Before doing so, we
revisit scenario A in the previous section, where aligning member and CCP
largest counterparty default loss probabilities is achieved by choosing S such
that π becomes equal to P (L1

0 > 0) = qD. Choosing π = qD simplifies the
above equation to (21)

Sl = (1− c1)D,

which is the formulation we derived earlier without making any distribu-
tional assumptions. When S is sized according to (21), in the event of the
default of the largest member, the probability that any surviving member
incurs any losses will be qD. In short, setting S = (1− c1)D gives (23).
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Concentration Ratio and the Default Fund

It is useful to highlight the nonlinear dependence of Sl = (1 − c1)D on
DF and subsequent implications for the concentration ratio. Suppose that
qD ∈ (0, q) is given, viewing Sl as a function of E1 = VaRqD((U1 −M1)+),

Sl =

(
1− E1∑N

i=1Ei

)
E1,

it is straightforward to see that E1 = E/2 (with E =
∑N

i=1Ei), maximizes
Sl. That is, a CCP with the concentration ratio of .5 would need to have
the maximum level of Sl = E/4 to satisfy the ICCs (20) and (23). As the
concentration ratio increases, the size of DF increases, and so SITG will be
sized based on lower percentages of DF. Lower levels of c1 lead to smaller
default funds, and so SITG will be specified based on higher portions of DF.
For instance, c1 = .8 gives Sl = .2D, while c1 = .2 gives Sl = .8D. Now,
suppose that c1 is fixed and view Sl as a function of D. Note that with a
given c1, DF is a decreasing function of qD. Lower qD lead to larger default
funds, and as D increases, the size of Sl will increase to ensure that member
default loss probabilities are aligned with those of the CCP – that is, to
ensure that the ICCs (20) and (23) are satisfied.

4.3 Exposure to Other Defaults

Proposition 4.3 gives the probability distribution function of Lji , the loss to
surviving member i’s DF assets conditional on the default of member j 6= 1.

Proposition 4.3 Under Assumption 4.1, the probability distribution func-
tion of member i’s loss conditional on the default of j 6= i is given by

P (Lji > x) = q

[
1 +

(
(
q

qD
)1/α − 1

)(
c1 +

S

Ej
+

x

Ej

(1− cj)
ci

)]−α
. (48)

It follows from Propositions 4.2 and 4.3 that the highest level of tail risk
corresponds to the default of member 1 with the highest stress loss over
margin

P (Lji > x) ≤ P (L1
i > x),

for any j 6= i, 1. That is, the largest DF exposure of members also corre-
sponds to the largest exposure of the CCP. By contrast, if S = 0, under
Proposition 4.3, all members have the same loss probability regardless of
the defaulter

P (Lji > 0) = P (L1
i > 0) ≥ qD.

Using Propositions 4.2 and 4.3, it is not difficult to see that setting
Sl = (1− c1)D results in the following bound for member loss probabilities,
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P (Lj0 > 0) ≤ P (Lji > 0) ≤ qD.

This shows that our formulation of S in scenario A lowers loss probabilities
associated with member DF contributions and also aligns member and CCP
large loss probabilities in that (20) and (23) are guaranteed to hold.

Now, consider SITG in scenario B. Recall that under Su = D(1 − cN ),
the ICC constraints (20) and (27) are satisfied,

P (Lji > 0) ≤ P (Lj0 > 0) ≤ qD.

It is straightforward to use Proposition 4.3 to quantify the difference between
loss probabilities under Sl and Su.28

4.4 Skin in the Game: Second Layer

In the design and analysis of S̃, we use Proposition 4.4, which gives our
Pareto-based formulation of member and CCP loss probabilities ((29) and
(33)) discussed in the previous section.29

Proposition 4.4 Under Assumption 4.1, and given S, S̃ > 0, the proba-
bility that member i’s loss conditional on the default of j 6= i exceeds its
prefunded DF resources is given by

P (L̃ji > Di) = q

[
1 +

(
(
q

qD
)1/α − 1

)(
D

Ej
+

S

Ej
+

S̃

Ej

)]−α
. (49)

Also, conditional on the default of member j and in the absence of S̃, the
probability that the loss to the CCP exceeds (a given) S > 0 and members
prefunded and unfunded DF assets is given by

P (L̃j0 > 0) = q

[
1 +

(
(
q

qD
)1/α − 1

)(
(1 + β)D

Ej
+

S

Ej
− βc1

)]−α
. (50)

Proposition 4.4 shows that the likelihood that the loss to the CCP ex-
ceeds S and members prefunded and unfunded DF assets takes its maximum
conditional on the default of member 1 — the member to which the CCP
has the largest exposure. Similarly, the probability that the loss to a non-
defaulting member exceeds its prefunded DF assets is largest conditional on
the default of member 1.

28In the context of CCP equity capital regulation, when regulatory SITG is viewed as
the minimum amount of equity capital, policymakers could consider Sl instead of Su.

29Proof of Proposition 4.4 is omitted as the method of proof follows that of Propositions
4.2 and 4.3.
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Suppose that S is formulated according to (47). When S̃ = 0, we can
write P (L̃1

i > Di) ≤ π ≤ qD. We denote the upper bound for P (L̃1
i > Di)

that corresponds to S̃ = 0 and S formulated as in (47) by π̃0. For instance,
when π = qD, i.e., when Sl = (1− c1)D, setting S̃ = 0 gives

π̃0 = q

[
1 +

(
(
q

qD
)1/α − 1

)(
2− c1)

)]−α
. (51)

This quantity could be interpreted as follows: if all members accept the risk
of their DF assets being depleted with probability π̃0, then the second layer
SITG will not be required.30

Now, working backwards and given our formulation of S with the target
loss probability π ≤ qD, we can specify S̃ that corresponds to a given target
loss probability π̃, where π̃ ≤ π̃0. For instance, suppose that π̃ = P (L̃1

i >
Di). Solving for S̃ gives

P (L̃1
i > Di) = π̃ ⇐⇒ S̃ =

(
( qπ̃ )1/α − ( qπ )1/α

( q
qD

)1/α − 1
+ c1 − 1

)
D, (52)

where π̃ < π̃0 ≤ qD.31 Note that setting π = qD and so Sl = (1− c1)D gives

P (L̃1
i > Di) = π̃ ⇐⇒ S̃ =

(
( qπ̃ )1/α − 1

( q
qD

)1/α − 1
+ c1 − 2

)
D. (53)

In our Pareto-based framework, designing S and S̃ with target loss prob-
abilities π and π̃ ensure that the basic and overarching incentive compati-
bility constraint (31) is satisfied,

P (L̃ji > Di) ≤ P (L̃1
i > Di)︸ ︷︷ ︸
π̃

< qD,

for any j 6= i, 1. In sum, our formulation of S and S̃ in this section achieves
the incentive compatibility constraints (20), (23), and (31) developed earlier
and will result in

P (L̃ji > Di) < P (Lj0 > 0) ≤ P (Lji > 0) ≤ qD. (54)

The last two inequalities follow from our results in the previous section, and
the first inequality follows from the definitions of L̃ji and Lj0.

30We note that π̃0 is an increasing function of c1, achieving its hypothetical minimum
at c1 = 0.

31In the formulation of S̃, the first term on the right side is positive because the target
probability π̃ is set to be less than π̃0.
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Remark It is important to note that under Assumption 4.1, S̃l and S̃u,
which were introduced in the previous section, can be viewed as special cases
of our general Pareto-based framework. To see this, consider scenario A in
the previous section and note that (52) can also be written as

P (L̃1
i > Di) = π̃ ⇐⇒ S̃ =

(
( qπ̃ )1/α − ( qπ )1/α

( q
qD

)1/α − 1
− 1

)
D − S,

for any S > 0. When the target loss probability π̃ is set as π̃ = P (L̃1
0 > 0),

then Proposition 4.4 and the above formulation results in S̃l = βD(1− c1).
Now, consider scenario B where the specific incentive compatibility objective
is satisfying (39). It is clear that S̃u = βD(1 − cN ) satisfies (39). It is also
clear that under S̃u, the basic ICC (31) holds with P (L̃1

i > Di) = π̃.

4.5 Cover-n Case

Appendix A.5 extends our results to the case of the prefunded default fund
sized to cover n member defaults; n ≥ 2. In what follows, we present
our SITG formulations under cover-n DF. The total DF is represented by
Ds,n = E1 + E2 + ... + En, and L1

i,n represents the loss of non-defaulting

member i conditional on the default of the largest member.32 Also, Sn (S̃n)
represents the first (second) layer of SITG under cover-n DF.

Similar to the earlier analysis, in our Pareto-based framework, we for-
mulate Sn that correspond to the target loss probability πn = P (L1

i,n > 0).
Under our incentive compatibility framework, the first layer of SITG can

be formulated according to (92) in the Appendix,

Sn =

[(
( q
πn

)1/α − 1

( q
qD

)1/α − 1

)(
c1∑n
k=1 ck

)
− c1

]
Ds,n.

and the second layer can be formulated as in (100),

S̃n =

[(
( q
π̃n

)1/α − ( q
πn

)1/α

( q
qD

)1/α − 1

)(
c1∑n
k=1 ck

)
+ c1 − 1

]
Ds,n.

We note that π̃n is the target loss probability associated with the second layer
of SITG, π̃n = P (L̃1

i,n > Di,n). In the cover-n case, L̃ji,n represents the total
loss to member i’s prefunded and unfunded DF contributions conditional
on the default of member j. Member i’s predunded DF is denoted by Di,n.
Our formulations of Sn and S̃n under cover-n DF, should be compared with

32Consistent with our analysis so far, default losses from the perspective of the CCP
and members are conditional on the default of a single member. It is not difficult to carry
out the analysis conditional on n ≥ 2 simultaneous defaults.
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S and S̃ under cover-one DF stated in (47) and (52).
In our framework, the first and second layer of SITG can be expressed

as a percentage of total DF. This quantity is publicly available from CCPs’
quantitative disclosure data. The concentration ratio can also be approxi-
mated from publicly available data. Recall that under Lemma A.2, when
tail exposures are modeled by Student-t distributions, we can write
M1/(

∑n
k=1Mk) = E1/(

∑n
k=1Ek) = c1/(

∑n
k=1 ck). Loss probabilities q and

qD that correspond to IM and DF are often prescribed by the regulators.
As discussed earlier, the tail exponent α is often in the 2 − 4 range. Our
incentive compatibility structure can mitigate CCP risk management incen-
tive distortions to varying quantifiable degrees by properly specifying target
loss probabilities πn and π̃n.

5 Capital Regulation

Using the EVT (Pareto)-based framework, we first introduce a lower bound
for CCP capital requirements and give a numerical example to show how
it varies as a percentage of DF. Next, our framework is used to test the
adequacy of Basel CCP risk capital rules.

5.1 Minimum CCP Capital Requirements

As discussed earlier, the CCP’s equity capital contribution to the default
waterfall could be viewed as a lower bound on its regulatory capital. Our
framework gives the following lower bound for CCP minimum capital re-
quirements,

S + S̃ =

[
( qπ̃ )1/α − 1

( q
qD

)1/α − 1
− 1

]
D, (55)

where S and S̃ are the first and second layer SITG given in (47) and (52).
Also, recall that the first target loss probability, π = P (L1

i > 0) and the
second target loss probability π̃ = P (L̃1

i > Di) satisfy π̃ < π ≤ qD < q. As
discussed earlier, a simple way to ensure that S̃ > 0 is by setting π̃ < π̃0,
where π̃0 given in (51), and it is derived under S̃ = 0 and S = (1− c1)D.

It is not difficult to show that as the number of members increases, S+ S̃
increases under our framework. To see this, note that π̃0 is an increasing
function of c1. So, when the number of members increases, c1 decreases, this
would reduce π̃0, which in turn lowers the target loss probability π̃ in our
SITG formulation. And, when π̃ decreases, the total level of S+ S̃ increases.
In words, all esle qual, as the number of members increases, higher levels
of SITG are required to mitigate risk management agency problems. This
can be contrasted with the work of Kuong and Maurin (2023), where a main
implication of their contract-theoretic model is rationalizing the documented
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empirical observations that larger CCPs allocate smaller amounts of their
own capital to the default waterfall.

It is worth emphasizing that our proposed CCP regulatory capital lower
bound (55) is grounded on the incentive compatibility framework developed
earlier. It also only depends on parameters and variables easily accessible to
and monitored and controlled by CCPs and their regulators. The following
example can be insightful as it shows how the proposed lower bound varies
as a function of π̃, qD, q, and α.

Example 5.1 Table 1 reports the ratio of the lower bound on regulatory
capital to DF for different values of α, q, qD, and π̃. First, note that D is
governed by the confidence level 1 − qD used to define default fund stress
scenarios. Note that D is a decreasing function of qD. So, all else equal,
(S + S̃)/D can be viewed as an increasing function of qD.

Recall that π̃ < π̃0 should hold to have S̃ > 0. Table 1 reports values
of π̃ for which there exists c1 ∈ (0, 1) and so π̃0 ∈ (0, qD) where π̃ < π̃0

holds. For instance, consider the first row of Table 1, with α = 2, q = .01,
and qD = .005. Setting c1 = .01 gives π̃0 = .003 while setting c1 = .9 gives
π̃0 = .0047. So, there exists π̃0 for which π̃ = .0035 falls below π̃0.

In interpreting Table 1, it is also useful to view α, q, and qD as given
and note that higher target loss probabilities π̃ are generally associated with
lower (S + S̃)/D ratios. In other words, to obtain lower loss probabilities,
the lower bound on the regulatory capital S + S̃ should be formulated as
a higher percentage of default fund D. For instance, consider the two rows
associated with α = 5. To achieve π̃ = .0045, the lower bound on capital
requirements becomes .16D while lowering this loss probability by roughly
22 percent to π̃ = .0035 requires more than 250 percent increase in CCP
capital contributions, S + S̃ = .57 D.

As discussed in Section 1, this numerical example shows that a total
level of SITG below 15-20 percent of DF cannot be produced in the realistic
part of our model parameter space. This contrasts with the current practice
that has been empirically summarized in the two recent Risk.net articles
by Thiruchelvam and Walker. The ratio of total IM to total DF may also
vary widely across CCPs, IM can be 10 times larger than DF (Ghamami
and Glasserman, 2017). Using 2015-2017 CCP quantitative disclosure data,
Huang (2019) estimates an average SITG of about USD 38 million and
an average IM of about USD 14 billion across 9-10 investor-owned CCPs.
When DF is 10 percent of IM, SITG becomes 2.7 percent of DF. Under
our framework, this level of SITG may not adequately mitigate CCP risk
management incentive distortions.

The current regulatory regime is not risk-based, (it is not based on eco-
nomic or financial economics analysis), our framework could be used to
improve CCP capital regulation.
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S+S̃
D α q (bps) qD (bps) π̃ (bps)

.67 2 100 50 35

.18 2 100 50 45

.09 2 200 100 95
1.62 2 100 30 10
2.51 2 100 80 50
17.32 2 100 80 10
3.44 3 100 50 10
.61 3 100 50 35
1.34 3 100 30 10
.36 4 100 50 40
.59 4 100 50 35
.67 4 80 60 50
3.17 4 70 40 10
.3 4 100 80 75
.16 5 100 50 45
.57 5 100 50 35
2.93 6 100 50 10
.57 6 100 50 35
.62 6 100 80 70

Table 1: Total SITG, S+ S̃, as a fraction of default fund D, computed from
(55), for different values of parameters α, q, qD, and π̃.

Remark The CCP regulatory capital lower bound in the more general
cover-n DF setting is derived in Appendix A.5. Systemically important
derivatives CCPs often operate under cover-2 DF, where the lower bound
becomes

S2 + S̃2 =

[(
( q
π̃2

)1/α − 1

( q
qD

)1/α − 1

)(
c1

c1 + c2

)
− 1

]
Ds,2. (56)

This follows from (101) in the Appendix. Recall that in the cover-one case,
we have D = E1, and total DF is Ds,2 = E1 +E2 in the cover-two case.33 It
is important to note that under similar incentive compatibility structures,
we have π̃2 < π̃. This can result in S2 + S̃2 ≥ S + S̃.

Optimal Capital Regulation

The lower bound on CCP equity capital (55) focuses on incentive compati-
bility constraints and central clearing risk management agency problems. It

33As described in Appendix A.5, in the more general cover-n DF setting, we have further
simplified the notation by assuming that EN ≤ EN−1 ≤ ... ≤ E2 ≤ E1. That is, under
the cover-n rule, we write D =

∑n
i=1En.
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abstracts away from costs of CCP equity capital and CCP failure. Consider
the case of a single representative CCP. Recall our sketch of the CCP objec-
tive function under outside ownership (8). Social welfare can be represented
by

φV − E[L]− E[Le]− c(Et)− csQ(S(π), S̃(π̃), Es), (57)

where under the incentive compatibility framework, the first layer of SITG,
S(π), can be viewed as a decreasing function of the target loss probability
π, and given π, the second layer of SITG, S̃(π̃), is a decreasing function
of the second target loss probability π̃. Given members’ initial margin and
default fund assets, the social planner’s objective would then be to find the
optimum SITG and Es that maximize (57). In addition to IM and DF, if
the Pareto tail exponent, α, is also given, the social planner’s problem could
be equivalently viewed as finding the optimum π, π̃, and Es that maximize
(57). Optimal SITG levels could then correspond to target loss probabili-
ties under which some of the ICCs may be satisfied and some may not hold
from members’ perspective. This paper does not study optimal SITG levels.
Instead, our focus has been on developing an incentive compatibility frame-
work that incorporates SITG into policymakers’ revised objective function.
That is, given the CCPs’ default waterfall, we replace the social planner’s
inaccurate objective function (10) with a more accurate one (57) and link
S and S̃ to a set of incentive compatibility constraints under which some of
the CCP risk management agency problems can be mitigated.

5.2 CCP Risk Capital

CCP risk capital refers to capital requirements for bank exposures to CCPs
(BCBS, 2023). Policymakers sometimes borrow ideas from bank capital
regulation when regulating CCPs. For instance, in the context of credit
and counterparty risk capital, a CCP is viewed as a financial firm holding
portfolios of financial assets with N counterparties. The CCP’s minimum
risk-based capital requirement is then a percentage of its risk weighted as-
sets, where the risk weights represent the credit quality (default probabil-
ity) of members (counterparties) and assets represent the CCP’s exposure
to its members net IM and DF over a given time period, (Ghamami, 2015).
Adopting the classical bank capital regulation framework for CCP capital
regulation can be seen in the Basel Committee’s formulation of CCP risk
capital. In our setting, the Basel Committee’s hypothetical CCP capital
requirement is formulated as

Kccp = kr ×
N∑
i=1

E[Ui −Mi −Di]
+ωi, (58)
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where the capital ratio kr is set to 8%, and the minimum requirement for
risk weights ωi is equal to 20%. Kccp with this fixed risk weight is then
used to formulate the CCP risk capital rule. More specifically, the amount
of capital that a bank needs to hold against its exposure to a CCP is an
increasing function of Kccp.

Since the sum of first and second layers of SITG can be viewed as a
lower bound for CCP capital requirements, there are different ways where
S + S̃ can be used to test the adequacy of CCP risk capital. The following
approach will be insightful. Note that if the inequality

Kccp ≥ S + S̃, (59)

does not hold, regulators may need to revisit the definition or formulation of
Kccp, adjust kr or ω, or they can replace Kccp with S+ S̃. Since ω represents
the average credit quality of clearing members, we have 0 ≤ ω ≤ 1. This
suggests that 0 ≤ ωkr ≤ 1. Consequently, if

S + S̃ ≥
N∑
i=1

E[Ui −Mi −Di]
+, (60)

holds under our framework, policymakers can revisit CCP risk capital. That
is, our framework implies that under (60), the CCP risk capital rule can
underestimate bank exposures to CCPs. Now, consider the following ratio,

R =
S + S̃∑N

i=1E[Ui −Mi −Di]+
. (61)

Proposition 5.2 derives a useful expression for R.

Proposition 5.2 Under Assumption 4.1, the lower bound (61) for the ratio
of SITG to Basel CCP capital, KCCP, is given by

R = q−1c1(α− 1)

[
(
q

π̃
)1/α − (

q

qD
)1/α

][
1 + c1

(
(
q

qD
)1/α − 1

)]α−1

. (62)

The following numerical example shows that condition (60) holds in most
parts of the model parameter space.

Example 5.3 Table 2 reports R in (62) for different values of the tail in-
dex α, concentration ratio c1, loss probabilities associated with IM and DF
confidence levels, q and qD, and member target loss probabilities associated
with unfunded DF, π̃. As discussed earlier, to have S̃ > 0, the target loss
probability π̃ should satisfy π̃ < π̃0, where π̃0 is defined in (51).34 Note that

34Recall that π̃0 is the loss probability associated with unfunded DF when we set S =
(1− c1)D and S̃ = 0.
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R α c1 q (bps) qD(bps) π̃0 (bps) π̃(bps)

4.19 2 .05 100 50 31 20
2.10 2 .05 100 50 31 30
8.56 2 .10 100 50 31 20
1.08 2 .10 80 70 63 60
4.56 2 .15 100 70 54 45
37.86 2 .20 100 50 33 10
7.66 2 .20 100 50 33 32
58.96 2 .30 100 50 34 10
18.83 3 .10 100 50 30 10
5.28 3 .10 100 50 30 29
39.6 3 .20 100 50 32 10
3.85 3 .20 70 60 50 53
.66 3 .01 100 50 29 25
16.6 4 .20 100 40 22 20
68.19 4 .40 100 20 9.69 9
4.81 4 .15 90 70 57 50
1.76 5 .01 100 50 27 10
.69 5 .01 100 50 27 25

11.19 5 .15 100 50 30 25
8.66 5 .15 100 50 30 29
.69 6 .01 100 50 27 25
4.31 6 .10 100 80 66 50
7.30 6 .10 100 50 29 25

Table 2: Lower bound R for the ratio of SITG to Kccp for different values
of α, c1, q, qD, π̃0, and π̃. We note that R > 1 in most cases unless the
concentration ratio is unrealistically small and π̃ is close to π̃0, which gives
S̃ close to zero. Rows in italics report the part of the parameter space
producing R < 1.

R is an increasing function of c1. It is clear that R > 1 in most parts of the
parameter space unless the concentration ratio is very small and π̃ is close
to π̃0, giving values of S̃ close to zero.

In short, Proposition 5.2 along with the above numerical example indicate
that capital rules on banks due to their exposures to CCPs may not suffi-
ciently absorb central clearing risks.

6 Monolayer Default Waterfall

Large derivatives CCPs do not often mutualize the pool of initial margin to
cover defaulting member losses. It is the default fund, the layer of collateral
collected in addition to IM, that can be mutualized to cover losses. The
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default waterfall in some CCPs, particularly at the largest securities clear-
inghouses in the U.S. could be different. Securities CCPs in the U.S. often
collect IM from their members and mutualize the pool of IM to cover losses.
The total IM under the monolayer default waterfall plays the role of DF in
CCPs with the more typical multilayered waterfall.

In this section, we analyze the monolayer default waterfall by model-
ing and estimating losses from the perspective of a CCP and its members.
We show that compared to CCPs with the multilayered waterfall structure,
clearinghouses with monolayer default waterfall would need to have higher
levels of SITG to mitigate moral hazard problems linked to risk management
incentives.

Monolayer CCPs have become increasingly important as a broader cen-
tral clearing mandate is a critical element of the government securities mar-
ket reform programs initiated by G30’s Working Group on Treasury Market
Liquidity after the emergence of the Covid-19 pandemic.35

6.1 CCP Perspective

In the absence of SITG, the exposure of a monolayer CCP conditional on
the default of member j can be written as

Ľj0 = (Uj −M)+,

where M =
∑N

i=1Mi, and j = 1, ..., N . To compare monolayer and mul-
tilayered default waterfalls, we make the natural assumption that Uj , the
random variables representing the CCP’s exposure to member defaults, are
drawn from the same distribution under both waterfall structures. Recall
that the CCP’s exposure to the default of a member under the more typical
multilayered waterfall structure is written as Lj0 = (Uj −Mj −D)+. As will
be explained shortly, in practice, it is often the case that

P (Ľj0 > x) ≤ P (Lj0 > x), (63)

for any x ≥ 0. In words, the monolayer CCP is less exposed to the default
of its members than the multilayered CCP. It is well-known that in CCPs
operating under the multilayered default waterfall, total IM can be notably
larger than the total DF. In fact, M can be more than 10 times larger that
D, particularly in large CCPs, (Ghamami and Glasserman, 2017).36 Note

35See the original G30 report G30 (2021) and the subsequent Status Update report G30
(2022).

36According to the Global Association of Central Counterparties, the total required IM
for selected 24 CCPs was 956.6 billion USD, and the total required DF was 49.1 billion
USD in 2022Q4. Aggregated over 24 CCPs, the ratio of IM to DF was around 19.5 at the
end of 2022. See the 2022 Annual Markets Review in Central Counterparty Clearing.

35
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that (63) holds when

M −Mj ≥ D, (64)

for any j = 1, ..., N . This condition is satisfied unless a CCP has an unreal-
istically high concentration ratio c1. It should be intuitively clear that since
collateral in the form IM often dominates DF, sharing IM to cover losses
could be beneficial from the CCP’s perspective.37

6.2 Member Perspective

It is also straightforward to see that compared to multilayered CCPs, in
monolayer CCPs, surviving members are more exposed to the defaulting
member losses. Note that SITG under the monolayer waterfall structure,
denoted by Š, comes into play right after the defaulters’ IM. Conditional on
the default of member j, potential losses to the IM contribution of surviving
member i can be written as

(Uj −Mj − Š)+ Mi

M −Mj
,

where i 6= j. In the scenario where surviving member losses cannot exceed
Mi, we have

Ľji = Mi min

(
(Uj −Mj − Š)+

M −Mj
, 1

)
. (65)

Comparing the two waterfall structures, we now show that members could
incur larger losses when the IM pool is mutualized in the absence of an
additional and separate prefunded default fund.

Proposition 6.1 If the SITG is sized similarly under both types of waterfall
structures, we have

P (Ľji > 0) > P (Lji > 0), (66)

where i 6= j, and Ľji and Lji are defined in (65) and (13), respectively. Let σ2
i

denote the variance of Ui. Furthermore if Ui/σi ∼ T (0, ν) has a mean-zero
Student- t distribution with ν > 1 degrees of freedom then for any loss level
x > 0

P (Ľji > x) > P (Lji > x). (67)

37Our analysis does not take into account recovery schemes such as variation margin
haircuts (Cont, 2015).
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Remark Student-t distributions belong to the class of elliptical distribu-
tions that encompasses a large battery of models used in finance and eco-
nomics, particularly in risk management (Andersen and Dickinson (2018);
Cont and Kan (2011); Ivanov (2017); Ghamami and Glasserman (2019)).
Student-t distributions include the normal distribution as a limiting case
(for ν → ∞). Since Ui, the CCP’s exposure to member i, captures in part
portfolio value changes over the MPOR whose length is often five days or
less, it is not unrealistic to assume that Ui has mean zero.

6.3 CCP Capital Contribution

If the CCP does not allocate its own capital to the default waterfall,38 we
have

P (Ľji > 0) = P (Uj > Mj) = q,

where 1 − q is the confidence level associated with the VaR-based initial
margin. That is, conditional on any member’s default, the probability that
a surviving member’s IM would incur losses is q. Comparing this member
loss probability q with CCP’s loss probability conditional on a member’s
default

P (Ľj0 > 0) = P (Uj > Mj +
∑
i 6=j

Mi),

it is clear that members could incur disproportionately larger losses com-
pared to the CCP. To perfectly align largest counterparty default loss prob-
abilities between the CCP and its members, the CCP should contribute∑N

i=2Mi to the loss waterfall. That is, setting Š = M −M1, gives

P (Ľ1
i > 0) = P (Ľ1

0 > 0), (68)

for any i 6= 1. Note that condition (68) is analogous to the ICC (23) that is
satisfied under (21) in multilayered CCP. We will return to this formualtion
of SITG toward the end of this section.

We now use our Pareto-based framework to draw a useful comparison
between monolayer and multilayered default waterfalls. We continue to
assume that exposures Ui are drawn from similar distributions, and that Ei
are quantified based on a given confidence level 1− qD under both waterfall
structures. Using Assumption 4.1 and employing the method of proof in
Proposition 4.3, we have

38Securities CCPs often have only one layer of SITG, which is denoted by Š in our
analysis. It is not difficult to extend our analysis to formulate the second layer of SITG
for monolayer CCPs.
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P (Ľji > 0) = q

[
1 +

(
(
q

qD
)1/α − 1

)
Š

Ej

]−α
,

which implies that P (Ľji > 0) ≤ P (Ľ1
i > 0) for any j 6= i, 1. We now spec-

ify SITG corresponding to a given target loss probability π̌. For instance,
suppose that π̌ = P (Ľ1

i > 0), where π̌ ≤ qD, associated with the largest
member default. Solving for Š yields,

P (Ľ1
i > 0) = π̌ ⇐⇒ Š =

(
( qπ̌ )1/α − 1

( q
qD

)1/α − 1

)
E1. (69)

Choosing π̌ = qD simplifies the above equation to

ŠqD = E1. (70)

That is, ŠqD = D unde the cover-one DF rule. Consequently, if SITG is
formulated according to (70), then in the event of the default of the largest
member, the probability that a surviving member would incur any losses
will be qD < q. This formulation of SITG is insightful as it provides a
way to directly compare monolayer and multilayered CCPs in terms of the
required capital contribution to the waterfall that would guarantee similar
default exposures from the perspective of members. That is, the two water-
fall structures result in equal member loss probabilities (conditional on the
largest member default),

P (Ľ1
i > 0) = P (L1

i > 0) = qD < q,

when the monolayer CCP operates under ŠqD = D while the multilayered
CCP contributes S = (1 − c1)D. Given that 0 < c1 < 1, this results shows
that policymakers may need to require higher levels of SITG at monolayer
CCPs so members would be exposed to similar levels of default risk under
both types of waterfall structures. All else equal, the higher the concentra-
tion ratio, the larger the difference between CCP equity capital contributions
under monolayer and multilayered default waterfalls.

The incentive compatibility framework can also be used more directly
to compare monolayer and multilayered CCPs. Recall the ICC (23) under
the multilayered default waterfall in scenario A. The analogous ICC for the
monolayer CCP could be written as

P (Ľ1
i > 0) = P (Ľ1

0 > 0) = π̌. (71)
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As discussed earlier, the above ICC is satisfied under Š = M −M1, which
can be written as

Šl = (1− c1)M (72)

by Lemma A.2 when we assume that Ui/σi ∼ T (0, ν) has a mean-zero
Student- t distribution with ν > 1 degrees of freedom. We note that under
(72), the following basic and overarching ICC in the monolayer case is also
satisfied,

P (Ľji > 0) ≤ P (Ľ1
0 > 0), (73)

for any j 6= i, 1. It is important to note that we just provided economic
arguments initially used in the design of SITG that led to Sl = (1 − c1)D
under the multilayered waterfall. In short, when normalized exposures Ui
have heavy (Pareto) tails, incentive compatibility constraints require

Šl =
M

D
Sl. (74)

In words, the capital contribution of the monolayer CCP to the default
waterfall may need to be several multiples of that of a similar CCP with a
multilayered waterfall.

To complete our comparative analysis of incentive structures associated
with monolayer and multilayered CCPs, recall scenario B under the more
typical default waterfall where Su = (1 − cN )D would guarantee that the
ICC (27) holds. We note that setting

Šu = M −MN = (1− cN )M (75)

leads to a similar incentive structure for the monolayer CCP: under (75),
the analogous ICC

P (Ľji > 0) ≤ P (Ľj0 > 0), (76)

holds for any j 6= i, 1. Consequently, when enforcing this second incentive
structure for monolayer and multilayered CCPs, we arrive at the same result
(74). That is, the SITG of the monolayer CCP would need to be M/D times
larger than the SITG under the multilayered default waterfall.

In summary, our results illustrate that CCPs operating under the mono-
layer waterfall should hold higher levels of skin-in-the-game.
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7 Concluding Remarks

Recent distress in the banking sector highlights the fact that post-GFC re-
covery and resolution frameworks may not work well in practice and may
need to be improved. The Silicon Valley Bank (SVB) collapsed in March
2023. While SVB was subject to bank-level resolution planning, and most
of its assets were held in the bank, the resolution plans could not be imple-
mented successfully (Clancy, 2023). Proper regulation of CCP capital and
SITG is at least as important as improving CCP recovery and resolution
frameworks.

We have proposed a robust and objective framework that can be used
for designing CCP SITG requirements. Our framework is grounded in in-
centive compatibility constraints that capture central clearing risk manage-
ment agency problems. The proposed SITG formulae are simple and read-
ily implementable using data available to CCPs and regulators. Compar-
ing our SITG formulations with CCP public data and the empirical evi-
dence from recent CCP quantitative disclosures (Ghamami and Glasserman
(2017); Huang (2019); Thiruchelvam (2022); Walker (2023)), we conclude
that investor-owned and member-owned CCPs may need to allocate more
capital to default waterfalls.

Central clearing will play a key role in the reform of U.S. Treasury mar-
ket. Resilience of clearinghouses that will be at the center of the UST market
is of critical importance.39 To diversify the supply of Treasury market liq-
uidity under stress, the first recommendation of G30 (2021) was that the
Federal Reserve should create a Standing Repo Facility (SRF) that provides
very broad access to repo financing for U.S. Treasury securities on adequate
terms. The SRF that the Fed created in 2021 did not provide the very
broad access recommended in (G30, 2021). This could have been in part
due to concerns about creating moral hazard problems that would increase
systemic risks as broader SRF access may incentivize firms to increase their
leverage (G30, 2022). The G30 have suggested that this moral hazard could
be mitigated by centrally clearing repos provided by the SRF. Our investi-
gation indicates that this agency problem may be counteracted after CCP
risk management agency problems are mitigated effectively.

39G30 (2021) emphasize that concerns about the concentration of risk at CCPs and
their transparency and governance should be addressed properly.
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A Appendix

A.1 Proof of Proposition 4.2

Note that

P (L1
i > x) = P

(
U1 > M1 +D1 + S +

x(D −D1)

Di

)
. (77)

Since Di = ciD, we can write

P (L1
i > x) = P

(
U1 > M1 +D1 + S +

x(1− c1)

ci

)
.

Set A ≡ D1 + S + x(1−c1)
ci

. The probability on the right side above can be
written as

P (U1 −M1 > A) = qP (U1 −M1 > A|U1 > M1), (78)

where q = P (U1 > M1). Recall that (U1 −M1)|U1 > M1 ∼ Pa(α, κ1), and
so,

P (U1 −M1 > A|U1 > M1) =

(
κ1 +A

κ1

)−α
. (79)

We now remove the dependence of the term on the right side above on κ1.
To do so, note that

qD = P (U1 > M1 +D) = qP (U1 > M1 +D|U1 > M1) .

Again, using our modeling assumption (U1 −M1)|U1 > M1 ∼ Pa(α, κ1), we
can write

P (U1 > M1 +D|U1 > M1) =

(
κ1 +D

κ1

)−α
,

and so

D

κ1
= (

q

qD
)1/α − 1. (80)

We note that (78)-(80) give (46). This completes the proof.
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A.2 Proof of Proposition 4.3

The proof is similar to the proof of Proposition 4.2, we only need to modify
the last part of the proof of Proposition 4.2 as follows. Note that

P (Uj > Mj + Ej) = qD = qP (Uj > Mj + Ej |Uj > Mj) = q

(
κj + Ej
κj

)−α
.

This gives

(
q

qD
)1/α − 1 =

Ej
κj
, which leads to κj =

Ej

( q
qD

)1/α − 1
.

This lead to (48) as its right side does not depend on κj .

A.3 Proof of Proposition 5.2

We use the following Lemma to prove Proposition 5.2.

Lemma A.1 Under Assumption 4.1, we have

E[(U1 −M1 −W )+] =
qκ1

α− 1

(
κ1 +W

κ1

)−α+1

. (81)

where W > 0 is a constant.

Proof of Lemma A.1

Note that

E[(U1 −M1 −W )+] = E[(U1 −M1)1A]−WP (A) (82)

where 1A is the indicator of the event A = {U1 −M1 > W}. First, consider
the expectation on the right side above. The conditional probability density
function of (U1 −M1)|U1 > M1 is

f1(u) =
α

κ1

(
κ1 + u

κ1

)−α−1

,

where u ≥ 0. Note that

E[(U1 −M1)1A] = qE

[
(U1 −M1)1A

∣∣∣∣U1 > M1

]
.
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We use integration by parts to calculate the conditional expectation above
to derive

E[(U1 −M1)1A] = q

∫ ∞
W

uf1(u)du = q

(
αW + κ1

α− 1

)(
W + κ1

κ1

)−α
. (83)

Next, consider the last term on the right side of (82) and note that

P (U1 −M1 > W ) = q

(
κ1 +W

κ1

)−α
. (84)

It is straightforward to see that (83) and (84) give (81). This completes the
proof.

A.3.1 Proof of Proposition 5.2

Using Assumption 4.1, we can write

P (Ui −Mi > Ei) = qD = q

(
κi + Ei
κi

)−α
,

and so we have

κi =
Ei

(q/qD)1/α − 1
.

Lemma A.1 and the above expression for κi give

N∑
i=1

E[Ui −Mi −Di]
+ =

Eq

[
1 + c1( q

qD
)1/α − 1

)]−α+1

(α− 1)

[
( q
qD

)1/α − 1

] , (85)

where E =
∑N

i=1Ei. Given our formulations of S and S̃ in (4.2) and (53),
we have derived (55). Dividing the right side of (55) by the right side of
(85) gives (62). This completes the proof.

A.4 Proof of Proposition 6.1

Note that

P (Ľji > x) = P

(
Uj −Mj > Š + x

M −Mj

Mi

)
, (86)

for any x ≥ 0 and i 6= j. Now, consider the more typical multilayered
waterfall (in the presence of a separate prefunded default fund, where the
IM pool is not mutualized). Conditional on the default of member j, the
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probability distribution of losses to member i’s default fund contribution
can be written as

P (Lji > x) = P

(
Uj −Mj > Dj + S + x

D −Dj

Di

)
.

Clearly, when Uj are drawn from the same distribution under both waterfall
structures, setting x = 0 and S = Š gives (66). This completes the first part
of the proof. We use the following Lemma for the second part.

Lemma A.2 If Ui/σi ∼ T (0, ν) has a mean-zero Student- t distribution
with ν > 1 degrees of freedom then

Ei∑N
j=1Ej

=
Mi∑N
j=1Mj

, (87)

where either VaR or ES is used in calculating Mi and Ei.

It is not difficult to see that Lemma A.2 gives Mi/(M −Mj) = Di/(D−
Dj). Consequently, (67) holds for any x > 0 and i 6= j as long as Di > 0.
This completes the proof.

Proof of Lemma A.2

The proof uses standard results in the theory of quantitative risk manage-
ment, (McNeil et al. (2015)).

First, suppose that Mi and Ei are calculated based on VaR. That is,
Mi = VaRq(Ui) and Ei = VaRqD((Ui −Mi)

+) with qD < q ≤ .01. Given
that Ui/σi ∼ T (0, ν), it is straightforward to show that Mi = σitq, where tq
denotes the inverse of Student t cumulative distribution function with mean
zero and degrees of freedom ν evaluated at 1− q. This results in

Mi∑N
j=1Mj

=
σi∑N
j=1 σj

. (88)

Since Mi = σitq and Ui/σi ∼ T (0, ν), it is straightforward to show that
Ei = σi(tqD − tq). Consequently,

Ei∑N
j=1Ej

=
σi∑N
j=1 σj

. (89)

Second, suppose that Mi and Ei are calculated based on ES. When
Ui/σi ∼ T (0, ν), it is well-known and can be easily shown that,

Mi = ESq(Ui) = σi
g(tq)

q

(
ν + t2q
ν − 1

)
,
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where g denotes the Student t probability density function with degrees of
freedom ν and mean zero. To calculate Ei = ESqD((Ui−Mi)

+), we use the
following well-known result (McNeil et al., 2015, Ch.2),

ESqD((Ui −Mi)
+) = ESqD(Ui)−Mi,

to derive

ESqD((Ui −Mi)
+)) = σi

(
g(tqD)

qD

(
ν + t2qD
ν − 1

)
− g(tq)

q

(
ν + t2q
ν − 1

))
,

So, (88) and (89) hold under ES and Student t distribution. This completes
the proof.

A.5 Cover-n Case

We now extend our analysis to the scenario where the prefunded default
fund is sized under the cover-n rule; 2 ≤ n ≤ N . To simplify the notation,
suppose that

EN ≤ EN−1 ≤ ... ≤ E2 ≤ E1.

In what follows, when necessary, we append a subscript or superscript n to
loss variables and other model components to differentiate the cover-n case
from the cover-one analysis presented in the main body of the paper. Under
the cover-n DF, we can write

Ds,n =
n∑
i=1

En.

Suppose that DF is allocated to members proportional to Ei, and member
i’s DF contribution is denoted by Di,n.

As before, default losses from both member and the CCP’s perspective
are conditional on the default of a single member.40 We note that under the
cover-n DF, the basic results of Section 3 remain unchanged. Specifically,
(17)-(20) and (28)-(31) continue to hold under the cover-n rule. However,
while P (L1

0 > 0) = qD under the cover-one DF, we have

P (L1
0,n > 0) = P (U1 −M1 > Ds,n) < qD,

under the cover-n rule. Also, in the absence of any capital contributions by
the CCP, we will have

P (L̃1
i,n > Di,n) = P (U1 −M1 > Ds,n) < qD,

40It is straightforward to carry out the analysis conditional on n ≥ 2 simultaneous
defaults.
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under the cover-n rule.41

A.5.1 Skin-in-the game for heavy-tailed losses: first layer

Under Assumption 4.1, the distribution of L1
i,n can be expressed in terms of

E1. For the cover-n DF, we can derive

P (L1
i,n > x) = q

[
1 +

(
(
q

qD
)1/α − 1

)( n∑
k=1

ck +
Sn
E1

+
(1− c1)

ci

x

E1

)]−α
.(90)

The proof is omitted as it is similar to the proof of Proposition 4.2.
Given (90), the target loss probability of πn = P (L1

i,n > 0), where π ≤
qD, results in the following SITG formulation

Sn =

(
( q
πn

)1/α − 1

( q
qD

)1/α − 1
−

n∑
k=1

ck

)
E1. (91)

Simple algebra gives the following second expression,

Sn =

[(
( q
πn

)1/α − 1

( q
qD

)1/α − 1

)(
c1∑n
k=1 ck

)
− c1

]
Ds,n. (92)

This formulation is useful as Sn is more explicitly written as a percentage
of total DF. Recall that we have formulated SITG as a percentage of total
DF in the main body of the paper in the cover-one case. We also note that
setting πn = qD gives

SqD,n =

(
1−

n∑
k=1

ck

)
E1. (93)

Conditional on the default of member j 6= 1 and under the cover-n rule,
we can derive

P (Lji,n > x) = q

[
1 +

(
(
q

qD
)1/α − 1

)( n∑
k=1

ck +
Sn
Ej

+
x

Ej

(1− cj)
ci

)]−α
.(94)

The proof is similar to the proof of Proposition 4.3 and so is omitted.
Comparing (90) and (94), we can write P (Lji,n > x) ≤ P (L1

i,n > x). Con-
sequently, formulating Sn according to (91) with the target loss probability

41It is also straightforward to extend our analysis to derive scenario-B SITG formu-
lations in this more general setting. That is, our framework could be used to construct
ranges for the first and second layer SITG that satisfy a battery of incentive compatibility
constraints.
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πn ≤ qD gives

P (Lj0,n > 0) ≤ P (Lji,n > 0) ≤ qD (95)

where Lj0,n = (Uj −Mj −Ds,n)+. Note that

P (Lji,n > 0) ≤ qD,

is the basic and overarching ICC (20) we introduced in the cover-1 DF
setting.

A.5.2 Skin-in-the game for heavy-tailed losses: second layer

Conditional on the default of member 1, the probability that the loss of
member i exceeds its default fund contributions becomes42

P (L̃1
i,n > Di,n) = q

[
1 +

(
(
q

qD
)1/α − 1

)(∑n
k=1 ck
c1

+
Sn
E1

+
S̃n
E1

)]−α
. (96)

This is to be compared with the first part of Proposition 4.4 in the cover-one
case. Note that with Sn being sized according to (91) and setting S̃n = 0,
we will have P (L̃1

i,n > Di,n) ≤ πn ≤ qD. We denote this upper bound

corresponding to S̃n = 0 by π̃0,n.
Given Sn as in (91), fixing the second target loss probability π̃n, where

π̃n ≤ π̃0,n ≤ πn ≤ qD, and working backwards, we have

S̃n =

[
( q
π̃n

)1/α − ( q
πn

)1/α

( q
qD

)1/α − 1
+ (1− 1

c1
)

n∑
k=1

ck

]
E1. (97)

Note that for the special case where πn = qD, S̃n becomes

S̃n =

[
( q
π̃n

)1/α − 1

( q
qD

)1/α − 1
+ (1− 1

c1
)

n∑
k=1

ck − 1

]
E1. (98)

Similar to cover-one case, for a CCP that operates under the cover-n
rule, our SITG formulations lead to

P (L̃ji,n > Di,n) < P (Lj0,n > 0) ≤ P (Lji,n > 0) ≤ qD. (99)

That is, our Pareto-based formulations of Sn and S̃n will lower members’
default loss probabilities below qD.

42The proof is similar to the proof of Proposition and so is omitted.
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Remark We can write (97) as

S̃n =

[(
( q
π̃n

)1/α − ( q
πn

)1/α

( q
qD

)1/α − 1

)(
c1∑n
k=1 ck

)
+ c1 − 1

]
Ds,n. (100)

This formulation is useful as it explicitly expresses S̃n as a fraction of total
prefunded default fund in the cover-n case. In short, it is insightful to
compare S̃n formulated in (100) with S̃ formulated in (52) in the cover-one
case. We also note that

Sn + S̃n =

[(
( q
π̃n

)1/α − 1

( q
qD

)1/α − 1

)(
c1∑n
k=1 ck

)
− 1

]
Ds,n. (101)

This is our proposed lower bound on minimum CCP regulatory capital re-
quirements under cover-n DF. It is useful to compare this lower bound with
the lower bound (55) derived under cover-one DF.
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